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SECTION I 

INTRODUCTION 

This report is Volume 3 of a three-volume report on the design of 
a security kernel for Multics.  This volume presents the top-level 
specification of some of the secondary subsystems of some of the 
liultics kernel.  The design methodology is discussed in Volume 1 of 
this report, and the details of the specification language used are 
given in Volume 2. 

Three secondary subsystems of the Multics kernel are discussed in 
this volume.  The functions presented in this paper are different from 
those presented in Volume 2 because they are not intended for use by 
normal liultics users. 

The first subsection discussed is the System Security Officer 
(SSO).  The SSO is the direct interface between the kernel and a user 
responsible for system security.  The SSO interface is important 
because it provides some functions that cannot be performed by normal 
users because they do not follow all the security rules. 

Next, hardware reconfiguration is discussed.  The reconfiguration 
functions provided are to be used only by system high processes and 
allow the user to dynamically alter the hardware configuration of the 
system.  It is intended that the supervisor running on the kernel 
restrict the use of these functions to the operator. 

Finally, the initialization of the Multics kernel is discussed. 
Initialization provides the kernel with an initial secure state  that 
will be maintained as secure by the kernel 0-functions. 

Other security-related subsystems, such as the Salvager and the 
Emergency Shutdown subsystems, are not discussed in this volume. 



SECTION II 

THE SYSTEM SECURITY OFFICER (SSO) INTERFACE 

TRUSTED SUBJECTS 

A secure computer system is not a closed system.  External inputs 
are required to complete and maintain security,  A mechanism is 
required to associate the computer system elements correctly with 
their counterparts in the people/paper world.  Unverified software 
cannot be trusted to make these bindings. 

All software on which the security of the computer system depends 
must be verified to perform its required function correctly if the 
system is to be certified.  The kernel software, the software that 
implements the reference monitor, represents part of the verified 
software of the system.  The remainder of the verified software 
comprises the "trusted subjects":  the active system entities that 
perform the security-related binding of computer system elements to 
the external environment. 

There are two areas in the Multics system where trusted subjects 
are needed.  One area is initialization, which is treated in the last 
section.  The other area is the interface between the kernel and the 
System Security Officer (SSO).  This section describes the nature of 
trusted subjects and the SSO Interface specification. 

The verification technique requires that all software to be 
certified have a top-level specification.  Because of the distinctly 
different duties of trusted subjects, however, the requirements of 
their interface specification are unlike those of the kernel. 

The arguments (external information) required by trusted subjects 
are supplied by users who are trusted to perform correctly, or by 
hardware.  An example of a hardware-supplied argument is a unique 
identifier of a terminal, supplied by the hardware of the terminal or 
its controller.  The trusted subject functions must be performed 
completely by verified software, since security depends on their 
correct operation.  The trusted subject functions must interact 
directly with the trusted users. 

Since the users of trusted functions are themselves trusted, the 
access control performed at the kernel interface is not required at 
the trusted subject interface.  Nevertheless, the requirement of 
direct interaction with users implies that an additional mechanism 
must be supplied to ensure trusted subject functions are only 



available to trusted users.  Since this mechanism is implementation 
dependent, a narrative description is provided, rather than a 
high-level specification. 

THE SSO INTERFACE DESIGN 

The most significant part of the design of the SSO interface, how 
to ensure direct interaction with trusted software, cannot be speci- 
fied.  The enforcement of availability of the functions is an imple- 
mentation dependent mechanism.  One possible implementation is to 
provide the SSO functions in a verified process invoked by the 
power-on interrupt of a terminal.  A verified process is required 
since it must handle terminal communications completely.  No uncerti- 
fied software may be interposed between the SSO function and the SSO 
— even for menial tasks like I/O — as It would then be possible to 
spoof the SSO or the SSO function and cause a breach of security. 

The process providing the interface functions must be protected 
such that software may not invoke it.  By implementing the process as 
an interrupt service routine for the terminal power-on interrupt, it 
can be ensured that only terminals and no software may execute the 
process.  Of course, only certain kinds of terminals, with the proper 
hardware, may be used. 

The SSO completes the computer security mechanism by providing 
necessary external inputs and performing operations that cannot be 
performed within the constraints of the kernel interface. 

The functions required by the SSO that have been identified are: 
a function to inform the kernel of current device access levels, a 
function to remove quota from an upgraded directory, a function to 
downgrade segments, and functions to allow the SSO to process logical 
volume mount requests.  The first function provides external informa- 
tion to the kernel.  The last two functions provide kernel information 
to the outside environment, and external information to the kernel, as 
explained below.  The others perform needed functions that cannot be 
performed under the restrictions of the kernel interface.  The 
requirements for verification of the functions and relaxation of secu- 
rity controls imply that the functions must be performed by trusted 
subjects. 

The SSO must be able to Inform the kernel of device access levels 
because the kernel has no way to ascertain this information by itself. 
For example, when SECRET paper is mounted in a printer, the kernel 
must be informed of the access level of the printer.  The levels of 
disk and tape drives must also be made known to the kernel. 



Moving quota from an upgraded directory back to its parent is 
reading information fron a higher level (the upgraded directory) and 
writing it at a lower level (of the parent).  Therefore, this function 
violates the *-property and is not allowed at the kernel interface. 
The SSO must perform this function, since the SSO is permitted to 
violate the *-property in a controlled manner. 

Downgrading segments is another function that violates some prop- 
erties of the security model and hence cannot be performed at the 
kernel interface.  The SSO has a function to set the access level of 
segments.  This function is used to downgrade segments. 

When a process calls the "Mount" function to mount a logical 
volume, and that logical volume is not already mounted, "Mount" enters 
a request to the SSO to mount the volume.  The list of requests is a 
first-in-first-out stack, so the SSO has a function to read the 
earliest mount request.  After he has read the request, the SSO mounts 
the appropriate volume(s), and then uses other SSO functions to inform 
the kernel that the logical volume is mounted for the requesting 
process, and which drive(s) it is mounted on. 

As with the kernel, a trusted subject has no way of guaranteeing 
the identity of a user, so it must rely on its ability to identify 
terminals and on physical security to ensure that only the SSO 
executes the functions provided by the SSO trusted subjects. 

COMPATIBILITY WITH THE CURRENT MULTICS 

Most of the SSO functions have no analogue in the current Multics 
since the security policy they are concerned with is not a part of the 
current Multics.  Compatibility is not a problem because all of the 
SSO functions will have a restricted number of users. 

SPECIFICATION 

Whereas the security kernel is concerned with the process as the 
specification representation of a subject, in the specification of the 
trusted software, the terminal embodies the active subject.  The 
terminal acts as proxy for the user, since we lack the hardware capa- 
bility to identify different users on a terminal. 

Corresponding to the process control function "process", which 
embodies all process information, the trusted subject module uses a 
hardware-supplied argument "terminal" to determine if the user of the 
function is using the SSO terminal.  This hardware-supplied argument 
appears in angle brackets (<>) in function argument lists. 

8 



The sections that follow provide descriptions of the SSO specifi- 
cation itself, broken down by parts of the specification. 

SSO Types, Parameters, Constants, and Definitions 

Figure 1 illustrates the SSO type definitions, parameters, 
constants, and definitions.  There are three data types defined in the 
specification.  The first two are related to user-specified segment 
pathnames, and the last is concerned with requests to mount logical 
volumes. 

The SSO is the only part of the kernel specification that identi- 
fies segments by their pathname.  The SSO interface is an interface to 
a person, not a program, so it is more convenient and less error-prone 
to identify segments by their pathname rather than their segment 
number.  The abstract form of a Multics pathname is defined by 
"path_name__type".  According to this definition, a pathname is a 
vector of entrynames.  Thus, "path_name_type" is the abstract data 
type of a pathname as entered by a user. 

Each entrynarae in a pathname (except the last one) is the name of 
a directory (the parent directory) that contains information that 
describes the next entryname.  When entered by a user, a Multics path- 
name begins with a ">M, which is shorthand for "root>".  In our secure 
Multics system, the root has a defining entry which is stored in the 
root directory.  Therefore, the parent directory of the root is the 
root itself.  Therefore, if we wish to precisely specify a Multics 
pathname, we must start the pathname with nrootroot>". We need to 
represent a pathname with this precision in the specification, so we 
have another data type that describes this "full" pathname.  This data 
type is called "full_j>ath__name_type".  In the rest of this document we 
will refer to this latter type of pathname as a "full" pathname, and 
to the pathname the user enters as a "regular" pathname. 

The last type definition is of a mount request, which specifies 
that the given process wants the given volume to be mounted. 

The parameter "path_name" is the regular pathname of a segment. 
Similarly, "full_path" is the full pathname of a segment.  The param- 
eter "terminal", as mentioned before, is the hardware-supplied uid of 
the terminal calling the SSO function.  The constant "max__path__length" 
is the maximum number of entrynames allowed in a regular pathname, and 
the constant "SSO" is the uid of the SSO terminal. 

In the definition section, "path_name_length" is the number of 
entries in a regular (user-supplied) pathname, "full_path_name" is a 
full pathname (as created by the "Make_full__path_name" V-function 



/* SSO type definitions */ 

type 
path_name_type 
f ul l_pa th_name_ty pe 
mount_request_type = 

(process: uid_type, 
vol_id: uid_type) 

vector(1 to max_path_length) of entry_type 
-  vector(1 to max_path_length+2) of entry_type 
structure 

/* SSO parameters */ 

parameter 
path_name: path_name__type 
full_path: full_path_name_type 
terminal: uid_type 

/* SSO constants */ 

constant 
max_path_length: integer 
SSO: uid_type 

/* SSO definitions */ 

define 
path_narae_length = cardinality{i | path_name[i] ^ "undefined"}; 
f ull_path_name = Make_full_path_name(path_name); 
full_path_name_length = cardinality 

<i | full_path_name[i] t  "undefined"}; 
full_path__length = cardinality 

{i | full_path[i] j  "undefined"}; 
Branch_path = Directory 

(Path_to_uid(Parent_path(full_path_name)), 
f ull_path_name [f ull__path_name_length]); 

Dir_branch_path = Directory 
(Path_to_uid (Parent_path (Parent_path (f ull_path_name))), 
f ull_path_name [full_path_name_length-l]); 

Figure 1. SSO Types, Parameters, Constants, and Definitions 

10 



macro), and "full_path__name_length" is the number of entries in a full 
pathname.  The definitions "full_path_jiame" and 
"full_path__name_length" are used only by O-functions and in defini- 
tions used by O-functions. 

The number of entries in a "full_path" is given by 
"full_j>ath_length".  Remember that "full_path" is a parameter to a 
V-function, so "full_path_length" is used only by some V-functions 
(those which are passed full pathnames). 

The last two definitions are used only by O-functions or 
V-f unctions with regular pathnames as arguments.  ,lBranch__pathM is the 
directory branch associated with a "path__name".  "Dir_branch_bathlf is 
the directory branch associated with the parent (directory) of a 
Mpath_name". 

SSO V-function Macros 

The SSO V-function macros are given in Figure 2.  All of these 
V-function macros are associated with pathnames. 

"Make__full_path__name" takes as its argument a regular pathname 
and returns a full pathname.  A full pathname is a regular pathname 
with "root>root" concatenated at the beginning. This macro is used 
only in the definition of "full_path_name". 

The remaining three macros take full pathnames as arguments. 
"Parent_path" returns the full pathname of the parent of the specified 
full pathname.  "Path_accessible" is a boolean-valued function that 
tells whether the specified full pathname exists and can be accessed 
by the SSO at its current access level.  "Path_to_uid" converts the 
given full pathname to the uid of the segment. 

SSO V-functions 

Figure 3 illustrates the SSO V-functions, both hidden and non- 
hidden. 

The hidden V-function nMount_request" is the list of mount 
requests compiled by the "Mount" O-function and processed by the SSO 
with the "Read_mount_request" OV-function. 

The non-hidden V-function "SSO_access_level" represents the 
current access level of the SSO and is derived from the access level 
associated with the SSO terminal.  The exception for this function 
assures that the user is at the SSO terminal. 

11 



/* SSO V function macros */ 

V_f unction_macro Make_f ull_jDath_name(path_narae) :   full_path__name_type 

derivation 
Make_full_j>ath_name[l] - "root"; 
tiake_full_path_name[2] = "root"; 
(V i 6 {1,2,   ...   path_name_length>) 

(Make_f ull_path_name [i+2]   ■ path_narae [i]); 
(V i _> path_name_length+2)(Make_full_path_name[i]   - "undefined"); 

V__function_macro Parent_path(full__path):   f ull_path_name_type 

derivation 
if  full__path_length = 0 

then Parent_path = "undefined"; 
else   (V i G <1,   2,   ...   ,   full_path_length-l}) 

(Parent_path[i]   = full_path [i]); 
(V i  > full_path_length)(Parent_path[i]   * "undefined"); 

end 

V_functionjnacro Path_accessible(full_path):   boolean 

derivation 
if full_path_length = 0 

then Path_accessible = true; 
else Path_accessible = 

if Path_accessible(Parent_path(full__path)) 
then Entry_defined(Path_to_uid(Parent_path(full_path)), 

full_path[full_path_length]) & 
Dominates(Device(SSO)•access_level, 

Directory(Path_to_uid(Parent_path(full_path)), 
full_jpath [full__path_length]) .access__level); 

end 
end 

V_function_macro Path_to_uid(full_path): uid_type 

derivation 
if full_path_length = 0 

then Path_to_uid = root__uid; 
else Path_to_uid = Directory (Path_to_uid(Parent_path(f ull_path) ) , 

full_path[full_path_length]).uid; 
end 

Figure 2. SSO V-function Macros 

12 



/* SSO Hidden_V_function */ 

Hidden__VJE unction Mount__request(tirae): mount__request_type 

/* SSO V-functlon */ 

V_function SSO_access_level(<terminal>): access_level__type 

exception 
"terminal - SSO; 

derivation 
Device (SSO). access__level; 

Figure 3. SSO V-functions 

13 



SSO OV-function 

The SSO has one OV-function, "Read__mount__request," as shown in 
Figure 4.  This function has as its value the earliest mount request, 
and deletes that request from the list once it has been returned.  The 
exceptions check that the caller is at the SSO terminal, that the SSO 
is executing at "system_high," and that there is a mount request to 
return. 

SSO O-functions 

The SSO O-functions appear in Figure 5.  These O-functions manip- 
ulate kernel information but are trusted to do so securely;  excep- 
tions check the consistency of the arguments. 

"Set_segment_al" is an SSO function used to declassify informa- 
tion by changing the level of the segment that holds it.  Although in 
the people/paper world individuals are allowed to do a form of declas- 
sifying by extracting paragraphs from documents, the analogous mecha- 
nism cannot be supported here due to the granularity of the informa- 
tion protection unit. 

The exceptions insure: that the caller is at the SSO terminal; 
that the segment specified is accessible by the SSO at its current 
access level;  that the segment specified is not the root; that the 
new access level remains increasing as you move down the hierarchy; 
that the segment is not a non-empty directory; and that segment does 
have terminal quota. 

The effect is simply to change the access level of the segment, 
and to revoke any current access each process has to the segment. 

"Set_device_al" is used by the SSO to inform the kernel of 
changes in device usage.  An example is changing of paper in a printer 
to allow it to print information at a different security level;  the 
kernel must be given this external information by the SSO. 

The exceptions check that the function is being invoked by the 
SSO terminal, that the new access level is within the bounds allowed 
for the device, and that no process is using the device. 

This function can also be used to change the level of the SSO 
terminal, since this terminal is considered a device in the specifica- 
tion.  The SSO terminal has a device_id of "SSO", so "Device(SSO)" is 
the SSO terminal. 

The "Remove_upgraded_quota" function is used by the SSO to remove 
quota from an upgraded segment and return it to its parent.  This 

14 



/*  SSO OV-function */ 

OV_function Read_mount_request(<terminal>): mount_request_type 

exception 
"terminal = SSO; 
Device(SSO).access_level ^ "systemjiigh"; 
Mount_request ■ "undefined"; 

effect 
Mount_request(min{(itime)('Mount__request(itime)~-"undefined")>) * 

"undefined"; 

derivation 
'Mount_request(rain{(itime)('Mount_request(itime)"«"undefined")}); 

Figure 4.  SSO OV-function 
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/* SSO O-functions */ 

0_function Set_segment_al(path_name, access_level, <terminal>) 

exception 
"terminal = SSO; 
"Path_accessible(full_path_name); 
Path_to_uid(full_path_name) = root_uid; 
"Dominates(access_level, Dir_branch_path.access_level); 
Branch_path.type = "directory" & 

(Hentry) (Entry_def ined(Branch_path.uid,ientry); 
Branch path.quota given <_  0; 

effect 
Branch_path.access_level = access__level; 
(Viprocess_id, iseg) 
if 'Process(iprocess_id).KST(iseg).uid - Path_to_uid(full__path_name) 

then Process(iprocess_id).KST(iseg) = "undefined"; 
end 

0_function Set_device_al(device_id, access_level, <terminal>) 

exception 
"terminal = SSO; 
"Dominates(Device(device__id).max_al, access_level); 
"Dominates(access_level, Device(device__id).min_al); 
"Dominates(Device(SSO).access__level, Device(device_id).access_level); 
Device(device_id).owner ^ "undefined"; 

effect 
Device(device_id).access_level=access_level; 

Figure 5. SSO O-functions 
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0__function Remove_jupgraded_quota(path_name,  quota,   <terminal>) 

exception 
"terminal « SSO; 
"Path_accessible(full_path__name); 
Path_to_uid(full__path_name) - root_uid; 
"quota > 0; 
(Branch__path.type s "directory") & 

(Dir_branch_path.sons_vol_id 4  Branch__path.sons_vol_id); 
Branch_path.quota ■ 0; 
Branch_path.quota - quota < Branch_path.quota_used; 
Branch path.quota given - quota <_ 0; 

effect 
Branch path.quota given ■ 'Branch^ath.quota^iven - quota; 
Branch_path.quota ■ 'Branch__path. quota - quota; 
Dir_branch_path.quota - 'Dir_branch_path.quota + quota; 

0__function Set_Drive(drive_no, vol_id, <terminal>) 

exception 
"terminal - SSO; 
Device(SSO).access_level ^ "system_high"; 
(f iprocess)(Process(iprocess).mount_list(Drive(drive__no))); 

effect 
Drive(drive_no) ■ vol__id; 

0_function Set_mount__list(process__id, vol__id, <terminal>) 

exception 
"terminal - SSO; 
Device(SSO).access_level f  "systemjhigh"; 
"Process(process_id) +  "undefined"; 

effect 
Process(process_id).mount__list (vol__id) * "true"; 

Figure 5. SSO O-functions (Concluded) 
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function cannot be provided at the kernel interface because it 
violates the *-property.  Although it would be reasonable to provide 
this function to all users, in the interest of maintaining a simple 
specification and implementation of trusted subjects only the SSO is 
allowed to execute it. 

In addition to checking that the SSO invoked the function, the 
exceptions ensure: that the specified segment is accessible to the SSO 
at its current access level; that the segment is not the root; that a 
positive amount of quota is to be removed;  that the segment is not a 
master directory (quota cannot be removed from a master directory); 
and that if the quota will remain non-zero it will cover the quota 
used. 

The effect of "Remove__upgraded_quota" is to reduce the quota and 
the quota_given in the segment's parent by the specified amount, and 
to increase the quota field of the segment's parent's parent. 

The last two O-functions are used by the SSO in processing mount 
requests.  After the SSO has used the OV-function "Read__mount_request" 
to find what process wants what logical volume mounted, he mounts the 
appropriate disk(s).  Once he has done the mounting, he uses the func- 
tion "Set_drive" to tell the kernel what drive(s) the logical volume 
is mounted on.  He then uses the function "Set_nount_list" to notify 
the requesting process that the volume has been mounted. 

"Set_drive" has as arguments a drive number and a logical volume 
id.  The exceptions insure that the caller is the SSO and that there 
is no process that currently has a volume mounted on the specified 
drive.  The effect is to save the name of the volume mounted on the 
specified drive. 

"Set_mount_list" has as arguments the name of the process that 
want the volume mounted and the name of the volume.  The exceptions 
check that the caller is the SSO and that the specified process 
exists.  The effect is to set the mount list of the specified process 
"true" for the specified volume. 

Design Considerations 

As has been noted, the users of the functions provided by this 
interface are trusted to preserve the integrity of the system and, 
therefore, none of the usual kernel access control checks are made. 
These functions are not required to correspond to the mathematical 
model of security because they represent an implementation requirement 
that is not addressed by the model. 
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The existence of an SFEP to handle terminal I/O is not reflected 
by the top-level specification of trusted subjects, since the trusted 
subject specification describes the interface provided by the coopera- 
tive effort of the SFEP and host.  Trusted subjects will be imple- 
mented as unified functions through appropriate communication between 
the certified software on both machines.  Since the software implemen- 
ting trusted subjects, in both machines together, must be verified to 
implement the single top-level specification given, it is inappro- 
priate at the top level to attempt to specify separately the responsi- 
bilities allocated to each machine. 

SSO REVIEW 

The SSO fulfills an important requirement: interfacing the secu- 
rity kernel with the external environment.  Because such a requirement 
does not exist in the current Multics, the SSO interface does not 
represent an incompatibility with current Multics.  It is instead, an 
addition to the functionality of the current Multics system. 
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SECTION III 

RECONFIGURATION 

A Multics system is made up of a number of different types of 
hardware modules, such as CPUs, memory modules, and I/O modules. 
These modules must be interconnected in a very precise manner, and 
once connected, all the modules can be used in running Multics. 
However, modules can be connected but not used in running Multics. 
The operator is allowed to reconfigure the system by specifying which 
of the connected modules should be used.  One major use for reconfigu- 
ration is to allow modules that need service to be removed from system 
use without having to stop Ilultics. 

This section deals with the reconfiguration of certain hardware 
modules of the Ilultics computer system.  In this section we review the 
current Multics reconfiguration design.  Next, we present the kernel 
design and consider compatibility issues, and finally we give a 
detailed specification of the reconfiguration top-level interface 
functions. 

THE CURRENT DESIGN 

The current Multics reconfiguration design provides operator 
functions to handle the reconfiguration of the major hardware modules. 
Each of the modules will be identified and described.  Then, the 
permissable physical and logical connections of the modules will be 
discussed, and the operator reconfiguration functions dealing with 
each type of module will be described. 

Major Hardware Modules 

The hardware modules that are handled by reconfiguration are 
described briefly below.  A more detailed description is given in the 
Multics Reconfiguration Program Logic Manual [1]. 

A processor, or CPU, is a major processing unit, and is one of 
three types of modules called active modules.  The other two types of 
active modules, the IOM and the bulk store, are defined below. 

An IOM is an input/output controller, 
active modules. 

It is another of the 
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A bulk store is the third kind of active module.  It provides 
auxiliary memory for paging, and is sometimes referred to as the 
paging device. 

A system controller is a non-active hardware module that inter- 
faces an active module to the memory of the configuration. The system 
controller also manages system interrupts and contains the system 
calendar clock.  The system controller is often referred to as the 
controller.  Since the system controller interfaces the active modules 
to the memory and hence provides memory functions to its users, the 
system controller is also often referred to as a memory.  Since this 
report was researched a new system controller was announced and is 
being offered by Honeywell. This new controller, often referred to as 
the "four megaword controller", is not considered in this report. 

Hardware Module Connections 

A port is a connection point for two hardware modules.  A 
controller port, or memory port, is a port on a system controller for 
connection to an active module. A processor port, or CPU port, is a 
port on a processor for connection to a system controller. 

All active modules (CPU, IOM, bulk store) are connected to the 
system via the system controllers.  Each active module is connected to 
every system controller at the same port. 

In other words, if a given CPU is connected to port 1 on one 
controller, then it must be connected to port 1 on the other control- 
lers as well.  This restriction is not due to hardware, but to soft- 
ware convention.  The relationships between connected memories and 
CPUs are best described in terms of the notion of control. 

A control processor is a processor that is allowed to change the 
port control and interrupt masking values of a system controller. A 
processor that can change these values has some degree of control over 
the controller.  Each system controller has one and only one control 
processor, although a processor can be a control processor for more 
than one system controller.  There is a switch on each system 
controller (the Execute Interrupt Mask Assignment, or EIMA, switch) 
that defines the control processor for that controller. 

A CPU is usually connected to several controllers, each of which 
connect the CPU to some memory. The CPU uses a controller to access 
the memory the controller interfaces.  When a CPU needs some other 
controller function, such as sending interrupts, there is, by software 
convention, a specific controller that the CPU always uses.  This 
controller is called the control memory for the CPU.  Each memory with 
its EIMA switch selecting a particular CPU is potentially a control 
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memory for that CPU, but only one of these memories is actually chosen 
as the control memory.  Each CPU must have a control memory, and a 
memory cannot be a control memory for more than one CPU.  Therefore, 
there must be at least as many memories in the configuration as there 
are CPUs. 

Figure 6 illustrates a Multics system with two processors and 
three memories/system controllers, showing the control processors and 
control memories.  CPU A is connected to each memory on memory port 7, 
and CPU B is connected on memory port 6.  Memory A is connected to 
each CPU on CPU port 0, Memory B on CPU port 1, and Memory C on CPU 
port 2.  The EIMA switch on memory A is set to port 7 and selects CPU 
A as control processor.  The EIMA switch on memory B is set to port 7 
and also selects CPU A as control processor.  The EIMA switch on 
memory C is set to port 6 and selects CPU B as control processor.  CPU 
A is control processor for two memories, so each of these two memories 
is a potential control memory.  By convention, only one of these memo- 
ries is used as control memory, and memory A has been chosen in this 
example.  CPU B is control processor for only one memory, so that 
memory is control memory for CPU B. 

Now that we have presented the relevant terminology, we can 
describe the operator reconfiguration functions for memories, CPUs, 
and bulk store. 

Memory Reconfiguration 

Memory Reconfiguration involves adding or deleting a system 
controller (memory) from the current configuration.  The names of all 
the memories in the system must be specified during initialization, 
but they are not necessarily configured at that time.  The memories 
that exist and are specified at initialization time may be added or 
deleted after initialization using operator commands.  At least one 
memory must be configured at initialization time.  This memory is 
called the bootload memory. 

The operator command for adding a memory specifies the name of 
the memory to be added, and optionally specifies the name of a partic- 
ular CPU to be the control processor for the new memory.  The operator 
is prompted to perform certain actions in the course of the execution 
of this command. 

The operator command for deleting a memory specifies the name of 
the memory to be deleted.  The bootload memory cannot be deleted.  If 
the memory deleted was the control memory for some CPU, the operator 
will be requested to make switch settings on the memory that is to be 
the new control memory for that CPU. 
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Processor Reconfiguration 

The Hultics system can run with more than one CPU, but when it is 
initialized, only one CPU (called the bootload CPU) is running.  Any 
other CPU's desired must be added by using the reconfiguration func- 
tions.  Similarly, system shutdown occurs with only one CPU running, 
so the processor reconfiguration functions are a regular part of 
multiple-CPU system operation. 

The operator function for adding a CPU specifies the name of the 
CPU, the system controller port to which it is connected, and the name 
of its control memory.  Certain operator actions are necessary during 
this command, and the operator is prompted to perform them. 

The operator command for deleting a CPU specifies the name of the 
CPU to be deleted.  The operator is prompted to change some switches 
on all memories that are controlled by the CPU being deleted. 

Bulk Store Reconfiguration 

A bulk store is used as a paging device in the Multics system. 
Bulk store reconfiguration is different from other types of reconfigu- 
rations in that it deals with bulk store records rather than with the 
bulk store as a whole.  There is only one bulk store in a system, and 
the records of the bulk store each hold one page of memory.  The 
records are added or deleted from the current configuration by oper- 
ator commands. 

The operator command for adding bulk store records specifies the 
first record to be added and the number of records to be added.  The 
command is allowed if the specified range of records exists in the 
bulk store.  Thus, it is legal to specify the addition of a record 
that is already configured, making it easy to add a large block of 
records without knowing exactly which records in the block are already 
configured. 

The operator command for deleting bulk store records specifies 
the first record to be deleted and the number of records to be 
deleted.  For convenience, it is legal to call for deletion of records 
that are already deleted.  If all records in the paging device are 
deleted, then the device may be disconnected from the system for 
repairs. 

It should be noted that paging device record deletion is also 
done automatically by system software if it is determined that a 
certain record is bad (i.e., causes read errors). 
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THE KERNEL DESIGN 

The kernel provides reconfiguration O-functions that support all 
the functions currently available to the operator to perform reconfig- 
uration.  Hardware reconfiguration must be performed by the kernel 
because the hardware "belongs" to the kernel - the kernel uses" the 
hardware to create objects available at the kernel interface.  The 
data manipulated by the kernel in performing reconfigurations has been 
assigned an access level of "system_high," so only processes with 
access levels of "system__high" may use the reconfiguration functions. 

A major consideration in the design of the reconfiguration func- 
tions is the handling of operator interactions.  In the current 
design, the operator is prompted to perform switch settings on 
controllers and processors in the course of a reconfiguration.  This 
prompting of the operator is undesirable for two reasons.  First, 
since kernel functions are indivisible, prompting in the middle of a 
function causes specification problems.  Second, having the kernel 
rely on an operator's actions to work properly is not reliable.  The 
procedure of performing a reconfiguration with operator actions is 
error-prone.  Therefore, in an effort to simplify the kernel and 
provide for more error free operation, we have attempted to remove the 
necessities of operator prompting. 

The major cause of operator prompting and switch settings is the 
Execute Interrupt Mask Assignment (EIMA) switch.  As mentioned above, 
this switch is used to specify the control processor for each 
controller.  Each controller has four EIMA switches, each of which may 
be enabled by software.  In the current design, only one of the 
switches is enabled, so the setting on the enabled switch determines 
the control processor for the controller.  During some reconfigura- 
tions, the setting of the switch must be changed to select a different 
control processor. 

An example of the need for changing an EIMA switch is the delete 
CPU operator function.  When a CPU that is the control processor for 
some system controller is deleted, then the EIMA switch on that system 
controller must be changed to specify some other CPU as a control 
processor.  In the current design, the operator is told which 
controller to set the switch on, and what the switch setting should 
be.  Referring to our previous example shown in Figure 6, if CPU B is 
deleted, the EIMA switch on memory C (which was controlled by CPU B), 
must be changed to select port 7, and hence CPU A, as control proc- 
essor. 

The kernel design removes the requirement for operator prompting 
and switch settings in two ways. First, a non-hidden V-function that 
contains information about the current configuration is provided.  The 
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information in this V-function can be used by the operating system to 
prompt the operator before the reconfiguration O-function is called. 
Second, a new convention for the use of EIMA switches is employed by 
the kernel.  Since there are four EIMA switches on each controller, 
each switch can be set to select a different processor before the 
system is initialized.  The EIMA switch settings are the same for each 
controller, i.e., if EIMA switch 1 on controller A selects processor 
B, then EIMA switch 1 on all other controllers also selects processor 
B.  Once the switches are set on all controllers, and the kernel is 
informed of the setting of the switches, the kernel can select a 
control processor for each controller by enabling only the appropriate 
EIMA switch in software.  The kernel is informed at initialization 
time of the EIMA switch settings.  Only processors that have EIMA 
switches selecting them may be configured, so this convention imposes 
the restriction that only four CPUs may be configured.! 

Since we have avoided operator interaction problems, the kernel 
O-functions can perform the reconfigurations present in the current 
design with no interruptions. 

COMPATIBILITY WITH THE CURRENT MULTICS 

Since reconfiguration functions are performed only by operators, 
compatibility is not as great an issue as it is with more user 
oriented subsystems.  The reconfiguration functions provided by the 
kernel roughly correspond to the operator functions provided in the 
current design.  The main incompatibilities are in the area of oper- 
ator interaction, and have been discussed in the previous section. 

SPECIFICATION 

This section presents a detailed description of the V-functions 
and O-functions that define the top-level specification of the kernel 
reconfiguration design. 

Data Types, Parameters, and Constants 

Figure 7 shows the data types, parameters, and constants used in 
the reconfiguration top-level specification. 

There are five non-standard data types used in this specifica- 
tion.  Processor_port_number is the port number of a CPU port, to 

^This restriction does not seem to be too great, since newer versions 
of the Multics reconfiguration software impose this same restriction. 
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type 
processor_port_number - integer (0 to max__processor__port); 
memory_port_number - integer (0 to max_controller_port); 
processor_index - integer(0 to max_processor__index); 
EIMA__switch_number: integer (1 to 4); 
control ler__data__type = structure 

(exists: boolean /* true if memory exists */ 
configured: boolean /* true if mem currently configured */ 
abs_wired: boolean  /* true if segment can contain abs_wired 

segments and hence cannot be deconfigured */ 
control__processor: cpu_id  /* control processor for this mem */ 
controlled_proc: cpu_id);  /* processor for which this 

controller is control memory; "undefined" if this 
memory is not a control memory */ 

processor__data_type = structure 
(configured: boolean  /* true if cpu is currently configured */ 
control_memory: processor_port_number /* processor port 

number of the control memory for this cpu.  */ 
memory_port: memory_port_number  /* this field tells to which 

memory port the processor is attached.  It is attached to 
the same memory port on each system controller. */ 

EIMAjswitch: EIMA_switch_number);  /* This field tells which 
EIMA (if any) points to this cpu. */ 

parameter 
controller: processor_portnumber: 
record: integer (0 to 2

wo«r
T
Ien*"l-l); 

count: integer (1 to 2
word-len8th-l); 

cpu_id: processor__index; 
mem__p o r t: nemo ry_p o r t_numb e r; 
control_mem: processor_port_number; 
control__proc: processor_index; 

icpu:   processor__index; 
imem:   processor_j>ort_number; 

constant 
max_processor_port: integer; 
max_controller_port: integer; 
nax_processor_index: integer; 

Figure 7. Reconfiguration Data Types, Parameters, and Constants 
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which a system controller (memory) is attached.  Memory__port_number is 
the system controller (memory) port number to which a CPU, IOM, or 
bulk store controller is attached,  Processor_index is a name for a 
CPU. 

Controller__data__type is a structure that contains data about all 
the possible controllers or memories in the system.  Exists is true if 
the memory exists, as specified at initialization time.  Configured is 
true if the memory is configured.  Abs_wired is true if the memory 
contains abs_wired segments.2 Control_processor specifies the control 
CPU for this memory, and controlled_proc specifies the CPU for which 

this is control memory. 

Processor_data_type is a structure that contains data about all 
the possible CPUs in the system.  Configured is true if the CPU is 
configured.  Control_memory specifies the control memory for this CPU. 
Memory__port specifies the memory port (on all memories) to which this 
CPU is attached.  EIMA_switch is undefined if this CPU is not speci- 
fied on any EIIIA switches; otherwise, it is the number of the EIMA 
switch on which the CPU is selected. 

The parameter section defines the data types of the arguments 
used in the specification.  Controller is a processor_port_number, and 
serves to identify a specific system controller (memory).  Record and 
count are used to specify a paging device record number and number of 
records, respectively, for the paging device reconfiguration func- 
tions.  Cpu_id is a processor_index, and serves to identify a specific 
CPU.  Mem_port is a memory_port_nuraber for some CPU.  Control_mera is 
the processor_port_number of some control memory, and control__proc is 
the name of some control processor.  Icpu and imem are used as quanti- 
fied variables in the specification. 

The constant section lists certain constant arguments whose 
actual value is irrelevant to the security of the top level.  The 
constants listed are the maximum number of processor ports, controller 
ports, and CPU's, respectively. 

Reconfiguration V-functions 

Figure 8 contains the hidden and non-hidden V-functions in the 
specification. The hidden V-functions, listed first, serve as data 
bases internal to the kernel and not available at the kernel inter- 
face.  The first four hidden V-functions contain data about the major 

- 

2Abs_wired segments are segments that are permanently core resident. 
If a memory contains any abs_wired segments then it cannot be deleted. 
Normally only the bootload memory contains abs_wired segments. 
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Hidden_V__function Controller_data(controller): controller_data_type; 

Hidden_V_function Processor_data(cpu__id): processor_data_type; 

Hidden_V_function IOM_memory_port: raeraory_port_number; 
/* This function tells to which memory port the IOM is attached. 

It is attached to the same memory port on each controller */ 

Hidden_V__function Pd_size: integer; /* # of pages on paging device */ 
size of paging device */ 

Hidden__V_function Nprocessors: integer(l to max_processor__index+l); 

Hidden__V_f unction Nmeraories: integer (1 to max__processor_port+l) ; 

/* Interface (non-hidden, derived) V-function */ 

V_function Configuration: structure 
(controllers(controller): controller_data_type 
processors (cpu_id): processor__data_type); 

exception 
Cur.access_level ~» "systemjiigh"; 

derivation 
controllers « Controller_data; 
processors - Processor_data; 

Figure 8. Reconfiguration V-functions 
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hardware modules.  Controller_data contains data about all possible 
system controllers (memories) in the system, as defined by 
controller_data_type.  Similarly, Processor_data contains data about 
the CPUs in the system.  IOM__memory_port is the memory (system 
controller) port to which the IOM is attached.  This value is set at 
initialization time and does not change.  Pd_size is the size, in 
pages, of the paging device.  This value is set at initialization time 
and does not change. 

The last two hidden V-functions, Nprocessors and Nmemories, are 
counts of the number of CPUs and memories currently in the configura- 
tion, respectively. 

There is one non-hidden interface V-function in this specifica- 
tion, which provides information about the current configuration for 
use by uncertified software executing at the operator's request.  This 
V-function, called Configuration, is derived from Controller_data and 
Processor_data. 

Memory Reconfiguration O-functions 

Figure 9 shows the functions Add_memory and Delete__memory. 
Add_memory takes as arguments the name (processor_port_number) of the 
controller (memory) to be added, and an argument to specify the CPU to 
be used as control processor for this memory.  The function requests 
that the specified memory be added with the specified CPU as control 
processor. 

The exceptions for Add_memory make sure that the current access 
level is "system_high", that the specified controller exists and is 
not already configured, and that the control processor is configured. 

The effects of the function include the following.  Configured is 
set for the specified memory.  Abs_wired is set to false for the spec- 
ified memory, because it will contain not abs_wired segments. 
Control_processor is set from the specified second argument, and the 
count of configured memories is incremented. 

Delete memory takes two arguments also.  The first argument is 
the name of the memory (controller) to be deleted.  The second argu- 
ment is the name of another memory to be used as control memory for 
any CPUs for which the deleted memory was a control memory.  Each CPU 
must have a control memory.  The second argument can be left undefined 
if this deleted memory was not a control memory.  Uncertified software 
can determine from the V-function Configuration controllers whether or 
not the memory to be deleted was a control memory.  If it was, the 
second argument must be supplied. 
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/* Memory (system controller) Reconfiguration O-functions */ 

0_function Add_memory(controller, control_proc) 

exception 
Cur.access_level **■ "systerajhigh"; 
^Controller^data(controller).exists; 
Controller_data(controller).configured; 
~Processor_data(control__proc). configured; 

effect 
Controller__data(controller).configured ■ "true"; 
Controller_data(controller).abs_wired ■ "false"; 
Controller_data(controller).control__processor - control_proc; 
Controller_data(controller).controlled__proc ■ "undefined"; 
Nmeraories ■ 'Nmemories + 1; 

0_function Delete_memory(controller, control_mem) 

let 
controlled_proc ■ Controller__data(controller).controlled_proc; 
control_memory - Processor_data(controlled_proc).control__memory; 

exception 
Cur.access_level ~» "systen__high"; 
Nmemories =* Nprocessors; /* Can't delete any more memories */ 
~Controller_data(controller).configured; 
Controller_data(controller)•abs_wired; 
controlled_j>roc ~« "undefined" & 

(~Controller_data(control_mera).configured | 
Controller_data(control_mem).controlled_proc~ss"undefined"); 

effect 
Controller_data(controller).configured = "false"; 
Nmemories s 'Nmemories -1; 
if controlled__proc ~« "undefined" 

then control_memory s control_mem; 
Controller_data(control_mem).controlled_proc ■ 

controlled_proc; 
end; 

Figure 9. Memory Reconfiguration O-functions 
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The exceptions for Delete_memory check that the current access 
level is "systemjiigh," and that the number of memories configured is 
not equal to the number of CPUs configured.  If these counts are 
equal, there will not be enough memories for control memories if a 
memory is deleted.  There must always be at least as many memories as 
there are CPUs in the configuration. 

The exceptions also check that the memory is not abs__wired. 
Finally, if the control_mem argument is needed, then control_mem must 
be configured and must not be a control memory already. 

The effects of Delete__memory are as follows.  The configured flag 
is set to false for the indicated memory.  The count of the number of 
memories is decremented.  If the deleted memory was controlling some 
CPU, then control_mem (the second argument) is made the control memory 
for that CPU. 

Paging Device Reconfiguration O-functions 

Figure 10 contains the two paging device (bulk store) reconfigu- 
ration O-functions. As mentioned earlier, bulk store reconfiguration 
deals with bulk store records rather than with the bulk store itself. 

The two functions each take as arguments the number of the first 
record to be added or deleted, and the number of records to be added 
or deleted.  The exceptions for both functions are the same: to check 
that the current access level is Msystem_highn, and that the range of 
records specified lies within the bulk store. 

These functions have no visible effects at the interface level. 
In other words, a call to these functions has no effect on the results 
of any future calls, because it is legal to add already configured 
records and to delete already deleted records.  The only possible 
top-level effect is on the speed of the system, but time is not 
observable at the top level. 

CPU Reconfiguration O-functions 

Figure 11 contains the CPU reconfiguration O-functions, A.dd_cpu 
and Delete_cpu. 

Add_cpu requires three arguments: the name of the CPU to be 
added, the control memory for that CPU, and the memory port to which 
that CPU is attached.  The exceptions for the function make sure that: 
the current access level is "systemjiigh", the specified CPU is not 
already configured, the specified control memory is configured and is 
not already a control memory, and that the specified memory port is 
not already being used for some processor or for the 1011. 
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/* Paging Device Record Reconfiguration O-functions */ 

0_function Add__pd__records (record, count) 

exception 
Cur.access__level ~« "system_highl,; 
record+count-1  > Pd_size; 

0__function Delete_j>d__records(record,   count) 

exception 
Cur.access_level ~- "systetn_high"; 
record+count-1 > Pd_size; 

Figure 10. Paging Device Reconfiguration O-functions 
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/* Processor   (CPU)  Reconfiguration O-functions  */ 

0__function Add_cpu(cpu__id,   control_mem,  raem_port) 

exception 
Cur.access_level "*■ "system_high"; 
Processor_data(cpu_id).configured; 
Processor_data(cpu_id).EIMA_switch ■ "undefined"; 
~Controller_data(control_raem).configured; 
Controller_data(control_nera).controlled_proc ~s "undefined"; 
(3-icpu) (Processor__data(icpu).memory_port ■ mem_port); 
IOM_memory_port * mem_port; 

effect 
Processor__data(cpu_id). configured = "true"; 
Processor_data(cpu_id).control_memory = control_raem; 
Processor_data(cpu_id).memory_port - mera_port; 
Controller_data(control_mem).controlled_proc ■ cpu_id; 
Nprocessors ■ 'Nprocessors + 1; 

0_function Delete_cpu(cpu_id, control_proc) 

let 
control_memory = Processor_data(cpu_id).control__meraory; 

exception 
Cur.access_level ~= "system_high"; 
Nprocessors ■ 1; /* can't delete last cpu */ 
~Processor_data(cpu_id).configured; 
~Processor__data(control_proc). configured; 

effect 
Processor_data(cpu_id).configured = "false"; 
Nprocessors ■ 'Nprocessors -1; 
Controller_data(control_memory),controlled__proc = "undefined"; 
(Vimem) if Controller_data(imem).control_processor ■ cpu_id 
then Controller_data(imem).control_processor = control_proc; 
end; 

Figure 11. CPU Reconfiguration O-functions 
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The effects of Add_cpu are as follows. The configured flag is 
set for the specified CPU, and the control_raeraory and memory_port 
fields are filled in. Also, the controlled__proc field on the speci- 
fied control memory is set to the CPU being added.  Finally, the 
number of processors configured is incremented. 

The 0-function Delete_cpu takes two arguments. The first is the 
name of the CPU to be deleted.  The second argument is the name of 
another CPU to be used as control processor for any memories for which 
the deleted CPU was control processor.  This argument can be "unde- 
fined" if the deleted CPU was not a control processor. 

The exceptions for Delete^cpu insure that: the current access 
level is "system_high", there is more than one CPU configured, the 
specified CPU is configured, and that if needed, the specified 
control_proc is configured. 

The effect of Delete_cpu is as follows.  Configured is set to 
false for the specified CPU. The number of processors is decremented. 
The controlled_proc field for the memory that was controlling the CPU 
is set to "undefined".  Each memory that was controlled by the speci- 
fied CPU is set to be controlled by control_proc. 

RECONFIGURATION REVIEW 

In this section we have described the kernel interface functions 
dealing with the reconfiguration of the various hardware modules of 
the Multics system.  The current design of the hardware reconfigura- 
tion operator functions has been described, and we have seen that the 
kernel functions are basically compatible.  The main area of incompat- 
ibility, that of operator interaction during reconfigurations, has been 
pointed out. We have also described the detailed specification of the 
kernel functions for memory (system controller) reconfiguration, 
paging device (bulk store) reconfiguration, and CPU (processor) recon- 
figuration. 
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SECTION IV 

INITIALIZATION 

Initialization is the process through which Multics is loaded 
into the computer and started running in its normal node.  This 
section discusses the problems involved with Multics system initiali- 
zation.  Initialization, very important to the security of the kernel, 
puts the kernel into a secure state, and the kernel O-functions map 
the kernel from one secure state into another.  Once the system is in 
a secure state, it will stay secure. 

In this section we shall discuss briefly how initialization is 
accomplished in the current Multics, then we will discuss initializa- 
tion of the security kernel.  Compatibility issues with the current 
Multics will be considered, and the specifications dealing with 
initialization will be presented. 

THE CURRENT DESIGN 

As it exists today, initialization of a Multics system is very 
complex and is difficult to verify.  The initialization process is not 
well modularized and is extremely hard to understand and modify.  The 
complexity of the design and coding makes verification infeasible. 

The information necessary to initialize the Multics system 
resides in two places, the Multics System Tape (MST), and the CONFIG 
deck.  The MST contains the programs and data that must be loaded to 
start Multics in any configuration, at any installation.  The informa- 
tion on the MST is installation independent.  The CONFIG deck contains 
the installation dependent data that is read by Multics to initialize 
itself in a particular configuration. 

To initialize the system, the operator issues commands to the 
Bootload Operating System (BOS) [2].  At this time the operator speci- 
fies whether this initialization is to be a warm start or a cold 
start.  A warm start (the most common), means the initial storage 
hierarchy is to be the one present at the last system shutdown.  A 
cold start means the storage hierarchy is to be recreated. 

At the command of the operator, BOS puts the CONFIG deck in a 
fixed place in memory and starts reading the MST.  The segments on the 
MST are organized into three collections of data.  Each collection, 
when loaded, initializes itself to provide a richer environment for 
the next collection to run in, and then reads in the next collection. 
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Through this reading and initializing of collections, the standard 
ring 0 environment is eventually achieved.  A more detailed descrip- 
tion of the initialization procedure can be found in [3]• 

One of the problems with this initialization scheme is that it is 
never really clear what environment a given initialization program 
runs in.  The number of different environments makes verification 
infeasible. 

THE KERNEL DESIGN 

The initialization of a kernel based Multics system is slightly 
different from that of the current Multics system, and consists of two 
parts: initialization of the kernel, and initialization of the rest of 
the operating system.  From the standpoint of security, we are 
concerned only with the initialization of the kernel.  Once the kernel 
is securely initialized, the remainder of initialization may run with 
unverified code. 

The scenario for initialization of a kernel based Multics system 
is as follows.  First, the Bootload Operating System (BOS) will be 
retained.  It is not known at this time how much of BOS can remain 
unverified, but it is certain that part of BOS must be verified, 
specifically, the portion that handles the CONFIG deck and the portion 
that loads the kernel tape. 

To start initialization, BOS loads the kernel from a protected 
tape^ and initializes the kernel.  This loading, initialization, and 
starting of the kernel may be accomplished in several ways.  One might 
be to save a core image of the kernel after it has initialized itself, 
and simply load and start this (already initialized) core image.  Once 
loaded and started at the appropriate point, the kernel would then 
proceed to load and initialize the rest of the operating system from 
another tape, similar to the MST in the current design.  From the 
standpoint of security, we are mainly concerned with the loading and 
initializing of the kernel.  The operating system resides on two tapes 
because one tape, which contains the kernel, must be protected and 
handled with special procedures.  The same restrictions do not apply 
to the tape which contains the rest of the operating system. 

The kernel representation will be placed on the protected tape so 
that when loaded into core and started in a specific place it will be 
secure.  Thus, the kernel must be completely initialized before it is 

^While tape is currently used as a storage medium for system software, 
we do not imply the kernel storage medium is restricted to tape. 
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placed on the protected tape.  Once loaded, the kernel will be config- 
ured to the hardware using initialization configuration functions and 
information from the CONFIG deck.  The CONFIG deck in the kernel 
design will be similar to the CONFIG deck in the current design, but 
will be expanded to contain some security-sensitive information. 
Processing the CONFIG deck and calling the initialization configura- 
tion functions must be done by verified code. 

To verify that the system is initialized securely, we must verify 
that the kernel representation on the protected tape is correct.  This 
verification may be performed in two ways.  First, we may inspect the 
contents of the tape.  This need be done only once for each copy of 
the system.  Second, we can generate the tape with verified software. 
It is unclear which method is preferable. 

V-function Initialization 

Since the initial state of the kernel must be secure, we must 
have some way to specify the initial secure state in terms of the 
V-functions that define the kernel.  We must therefore specify the 
initial values of all non-derived V-functions. 

Specifying the initial values of the V-functions will define, for 
example, the initial hardware configuration and the initial state of 
the system. 

Initialization Reconfiguration Functions 

The initial secure kernel, as loaded from the protected tape, is 
a functional kernel, but will not reflect the hardware and software on 
which the system is to run.  We must provide O-functions to modify the 
state of the kernel in a secure manner.  The functions dealing with 
the hardware are described in the section on reconfiguration.  There 
are other functions, however, that will be desirable. 

Additional functions may be required to deal with changing the 
size and/or number of kernel data bases and to assimilate the data 
found on the CONFIG deck into the kernel configuration.  Not all of 
the desirable functions have been identified yet, but some are 
included in the specification. 

Lower Level Initialization 

The functions shown in this specification are concerned only with 
the initialization of top level V-functions.  There is some informa- 
tion that must be supplied at initialization time that is supplied to 
lower levels of the kernel, such as physical device addresses.  This 
information is not treated in this specification. 
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COMPATIBILITY WITH THE CURRENT MULTICS 

The kernel initialization scheme is not compatible with the 
current scheme because only part of the total initialization process 
will be verified.  Multics initialization as a whole is different, 
because of the existence of two system tapes, one protected, and one 
not.  Compatibility is not as much of an issue with initialization as 
it is with other, more user-oriented subsystems.  An incompatible 
initialization interface effects only the operators, not the users. 

The real compatibility issues, however, are concerned with the 
generality and installation independence of the information on the two 
tapes.  The current MST is installation independent.  The current 
initialization process is unstructured and ad hoc.  The new initiali- 
zation technique provides more structuring, and provides a standard 
(kernel) environment in which most of initialization can run.  The 
standard environment is achieved by binding together most (if not all) 
of the kernel at the protected tape generation time, instead of at run 
time.  It is possible that pre-binding may cause a slight loss of 
generality of the kernel tape, the extent of which is not known at 
this time. 

SPECIFICATION 

We will now describe in detail the specification of the top level 
of initialization.  The initialization specification consists of 
parameter and constant definitions, an 0-function to initialize the 
V-functions in the top level, and some initialization configuration 
0-functions. 

The initialization O-functions are trusted functions (trusted 
subjects), because the security of their operation depends on the 
validity of their arguments.  In other words, for secure operation, 
the arguments must be specified correctly.  This restriction should 
not be a problem, however, because the arguments required by these 
functions are supplied by users who are trusted to perform correctly. 
The interface between these functions and their users is like the 
interface described in the previous section on the SSO. 

Initialization Parameters and Constants 

Figure 12 shows the parameters and constants defined for initial- 
ization.  The first group of parameters defines the types of the 
arguments to the 0-function "Initialize_top_level." The second group 
of parameters defines the types of the arguments for the initializa- 
tion configuration O-functions. 
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/* Initialization parameters */ 

parameter 

cold_start: boolean; 
IOM_port: memory_port_number; 
bootload_cpu: processor_index; 
bootload_cpu_memory_port: meraory_port_number; 
bootload__memory: processor__port_number; 
idevice_id: uid_type; 
ientry: entry_type; 
iprocess_id: uid_type; 
iuid: uid_type; 
paging_device_size: integer; 

device_max_al, device_min_al, device_access_level: access_level_type; 
vol_id: uid_type; 
vol_access_level: access_level_type; 
vol_//_of_packs, vol_quota: integer; 

/* Initialization constants */ 

constant 

SSO: uid_type; 
initializer: uid_type; 
initializer_process_data: process_type; 
initial_interpreter_data: interpreter_data_type; 
root_branch: branch_type; 

Figure 12. Initialization Parameters and Constants 
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Five constants are defined for this specification.  "SSO" is the 
unique identification of the System Security Officer (SSO) terminal, 
"initializer" is the unique ID of the initializer process, and 
"initializer_process_data" is the initial data about the initializer 
process.  Data about the initial state of the interpreter is contained 
in "initial__interpreter_data".  The constant "root_branch" is the 
branch that describes the root, and is stored in the root. 

Initialize Top Level O-function 

Figure 13 illustrates the O-function that initializes all non-de- 
rived V-functions in the top level specification.  Initializing the 
non-derived V-functions also initializes the derived V-functions, 
since they are derived from non-derived V-functions.  The effect 
section for this function lists the effects pertaining to each 
subsystem in the specification.  The arguments to Initialize__top_level 
will be discussed along with the subsystem that uses them. 

The effects pertaining to reconfiguration use the first nine 
arguments.  These arguments must be specified correctly for the system 
to run correctly and for the reconfiguration functions to work 
securely and correctly.  "IOM__port" is the memory port number of the 
IOM.  "Bootload_CPU" is the processor index of the running CPU. 
"Bootload_CPU_memory__port" is the memory port to which this CPU is 
attached.  "Bootload_memory" is the number of the processor port to 
which the bootload memory is attached.  "EIMA_switch_" 1 to 4 are the 
processor indices of the CPUs selected by the four EIMA switches. 
"Paging_device_size" is the number of records in the paging device. 
The V-functions in the reconfiguration specification are initialized 
to reflect the hardware base of the system as specified by these five 
arguments. 

"IOM_memory_port" saves the memory port number of the IOM for 
future error checking.  "Processor_data" is initialized to reflect the 
current CPU configuration.  Only the bootload CPU is configured.  The 
control memory for the bootload CPU is the bootload memory, as speci- 
fied by the O-function argument.  The memory port to which the boot- 
load CPU is attached is set from "bootload_CPU_memory_port".  The 
"EIMA_switch" field for each processor is set to the number of the 
EIMA switch selecting that processor.  If no EIMA switch is selecting 
the processor, then the "EIMA__switch" field is undefined. 

"Controller__data" is set to reflect the initial set of memories. 
During this phase of initialization, only the bootload memory is 
considered to exist.  The existence of other memories is made known 
with the "Define_systen_controller" O-function (described below).  The 
bootload memory is configured and contains abs_wired segments.  The 

41 



/* Initialization O-functions */ 

0_function Initialize_top_level (IOM_port, bootload_cpu, 
bootload_cpu_memory_port, bootload_memory, EIMA_switch_l, 
EIIIA_switch_2, EIMA_switch_3, EIMA_switch_4, paging_device_size, 
cold_start) 

effect 

/* Reconfiguration Initialization effects */ 

I011_memory_port = IOM_port; 
Processor_data(bootload_cpu).configured = "true"; 
Processor(bootload_cpu).control_memory = bootload_memory; 
Processor_data(bootload_cpu).memory_j>ort = bootload_cpu_memory_port; 
(Vicpu^bootload_cpu) Processor_data(icpu).configured - "false"; 
(Vicpu) if icpu=EIMA_switch_l then Processor_data(icpu),EIMA_switch=l; 

else if icpu=EIMA_switch_2 then Processor_data(icpu).EIMA_switch-2; 
else if icpu-EIMA_switch_3 then Processor_data(icpu).EIMA_switch=3; 
else if icpu=EIMA_switch_4 then Processor_data(icpu).EIMA_switch=4; 
else Processor_data(icpu).EIMAjswitch = "undefined"; 
end; 

Controller_data(bootload_meraory).exists = "true"; 
Controller_data(bootload_memory).configured = "true"; 
Controller_data(bootload_memory).abs_wired = "true"; 
Controller_data(bootload_memory).controlled_proc = bootload_cpu; 
Controller_data(bootload_memory).control_processor = bootload_cpu; 
(Vimem^bootload_raeraory)  Controller_data(imera).exists = "false"; 
Nprocessors = 1; 
Nmemories = 1; 
Pd_size = pacing devicesize; 

/* Interpreter Initialization effects */ 

Interpreter_data = initial_interpreter_data; 

/*,SSO Initialization effects */ 

Mount_request = "undefined"; 

Figure 13. Initialize_top_level O-function 
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/* External I/O initialization effects */ 

Device (SSO ).max_al - "systera_high"; 
Device(SSO).min_al - "system_low"; 
Device(SSO).access_level - "system_high"; 
Device(SSO).owner - "undefined"; 
Device(SSO).status - "undefined"; 
Device(SSO).buffer - "undefined"; 
(Videvice__id 4  SSO) (Device (idevice_id) - "undefined"); 

/* Process control initialization effects */ 

Cur_j>rocess - initializer; 
Process(initializer) ■ initializer_process_data; 
(Viprocess_id 4  initializer)(Process(iprocess__id) ■ "undefined"); 

/* Common initialization effects */ 

Audit_log - "undefined"; 

/* Storage Control initialization effects */ 

Drive - "undefined"; 
if cold_start then 

Directory(root_uid, "root") ■ root_branch; 
(Vientry 4  "root")(Directory(root_uid, ientry) - "undefined"); 
(Viuid 4  root_uid) (Vientry) 

(Directory(iuid, ientry) - "undefined"); 
LVRF =» "undefined"; 
end; 

/* If this is a cold start, we must initialize with an empty tree, 
otherwise, the tree is already there, having been initialized when 
created. */ 

Figure 13. Initialize__top_level O-function (Concluded) 
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control processor for the bootload memory is the bootload CPU, and the 
CPU controlled by the bootload memory is the bootload CPU. 

The remainder of reconfiguration initialization sets the current 
number of processors to one, the current number of memories to one, 
and the size of the paging device to "paging_device_size". 

The initialization of the interpreter involves setting the 
initial value of "Interpreter_data" to . "initial_interpreter_data." 

The SSO is initialized by setting the list of mount requests to 
"undefined." 

The initialization of external I/O defines the initial device 
configuration.  "Device" contains information about one terminal, the 
SSO terminal.  Information about other terminals is not stored in 
"Device", because they are considered SFEP devices, whereas the SSO 
terminal is considered a kernel device.  The access level in the SSO 
terminal is system high.  The SSO is the only device defined at 
initialization time.  Other devices are defined using the 
"Define_device" configuration function described below. 

Whether or not Multics needs separate operator's and SSO termi- 
nals is still an open question. 

The initialization of process control defines the initial 
process, the initializer process.  There are no other processes 
defined initially. 

Initialization of the common V-functions is completed by setting 
"audit_log" to undefined. 

The initialization of storage control starts by setting the 
information about the mounted volumes ("Drive") to "undefined". The 
remainder of storage control initialization depends on whether or not 
this is a cold start, as indicated by the argument "cold__start". If 
this is not a cold start, then the segment hierarchy and the Logical 
Volume Record File (LVRF) are assumed to be unchanged since the last 
shutdown, i.e., the storage system is intact on disk. 

If this is a cold start, however, no hierarchy exists on disk, 
and a new one must be created by the kernel and the (unspecified) 
restore subsystem (which is trusted).  For a cold start, the root is 
created with only one entry, which is a description of the root 
itself.  No other segments or directories exist.  They are created by 
the restore subsystem from a previously created backup.  Also, the 
LVRF is set to undefined.  Entries in the LVRF are defined by the 
"DefineJLVRF" configuration function.  Note that entries in the LVRF 
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cannot be removed.  The LVRF can shrink in size only as the result of 
a cold start« 

Initialization Configuration O-functions 

Figure 14 illustrates configuration O-functions that are used for 
initialization.  It is expected that most of these functions will not 
be called directly as the result of an operator command, but will be 
called by the verified software processing the CONFIG deck.  For 
example, one of the initialization configuration functions already 
mentioned is "Define_systera_controller".  This function is called by 
verified software that is processing the CONFIG deck, to specify which 
system controllers exists, even though they may not yet be configured. 
The exceptions for all of these functions check that they are being 
called by the SSO terminal with a "system_high" access level. 

The 0-function "Define_device" provides a way to define what 
devices are available.  An exception for this function checks that the 
maximum access level being assigned the device dominates the minimum 
for the device.  The effect of this function is to set the minimum and 
maximum access levels for the device.  The current "access_level", 
"owner", "status", and "buffer" of the device are set to "undefined". 

"Define_LVRF" is used to specify an entry in the Logical Volume 
Record File (LVRF), which defines the logical volumes in the system. 
The effect of the function is to mark that the specified LVRF entry 
exists, but that the volume is not mounted.  Also, the access level, 
number of packs, and quota of the logical volume are set. 

The 0-function "Define_system_controller" is used to make the 
existence of a system controller known to the system.  System control- 
lers not made known at initialization time cannot be configured later. 
The effect is to mark that the controller exists, but is not config- 
ured.  The controller can eventually be configured using the hardware 
reconfiguration functions. 

INITIALIZATION REVIEW 

We have described, in this section, how Multics is currently 
initialized, and how the initialization process must be reorganized to 
accommodate a kernel based Multics system.  The security kernel must 
be securely initialized, but the rest of initialization can be 
performed by unverified code.  The V-functions that comprise the top- 
level specification are initialized by the O-function 
Initialize_top_level.  Once the kernel is initialized, it is installa- 
tion independent and must be reconfigured to the hardware using the 
initialization configuration functions. 

45 



/* Initialization Configuration O-functions */ 

0__function Define_device(device_id, device_max_al, device_min_al, 
<terminal>) 

exception 
terminal ^ SSO; 
Device(SSO).access_level $  "system_high"; 
"Dominates(device_max_al,device_min_al); 

effect 
Device(device_id).nax_al ■ device__raax_al; 
Device(device_id).min_al - device__min_al; 
Device(device_id).access_level = device_min_al; 
Device(device_id).owner = "undefined"; 
Device(device_id).status ■ "undefined"; 
Device (device__id).buf f er = "undefined"; 

0_function Define_LVRF (vol_id, vol_access_level, 
vol_quota, <terminal>); 

exception 
terminal ±  SSO; 
Device(SSO).access_level  ±  "system_high"; 
LV_def ined(vol__id); 

effect 
LVRF(vol_id).mounted = "false"; 
LVRF(vol_id).access_level = vol_access_level; 
LVRF(vol_id).quota ■ vol_quota; 

0__function Define_system_controller(controller, <terminal>) 

exception 
terminal t  SSO; 
Device(SSO),access_level ^ "system_high"; 

effect 
Controller_data(controller).exists = "true"; 
Controller_data(controller).configured ■ "false"; 

Figure 14. Initialization Configuration O-functions 
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APPENDIX I 

INDEX TO SPECIFICATIONS 

Functions 

Add_cpu 34 
Add__memory 31 
Add_pd__records 33 
Branch_path 10 
Configuration 29 
Controller__data 29 
Define_LVRF 46 
Define__device 46 
Define_system__controller 46 
Delete_cpu 34 
Delete_memory 31 
De le t e_p d_re co rds 33 
Dir_branch__path 10 
EIMA_switch_number 27 
I0Mjnemory__port 29 
IOMjport 40 
Initialize_top_level 42 
Make__full__path_name 12 
Mount_request 13 
Nmemories 29 
Nprocessors 29 
Parent__path 12 
Path_accessible 12 
Path__to uid 12 
Pd_size 29 
Processor__data 29 
Read__mount_request 15 
Remove_upgraded__quota 17 
SS0_access__level 13 
SetJDrive 17 
Set__device_al 16 
Set_mount_list 17 
Set_segment_al 16 

Basic Definitions 

bootload_cpu 40 
bootload_cpu__memory__port 40 
bootload_memory 40 

cold__start 40 
control__mem 27 
control_j>roc 27 
controller 27 
controller_data__type  27 
count  27 
cpu_id 27 
device__access__level 40 
device_max_al 40 
device_min__al 40 
full__path  10 
full_path_length 10 
full__path_jiame  10 
full_path_name_length 10 
full_path_name_type  10 
icpu 27 
idevice_id 40 
ientry 40 
imem 27 
iprocess_id  40 
iuid  40 " 
max__controller__port 27 
max_processor__index 2 7 
max_processor_port  27 
mem_port  27 
memory_port__number 27 
mount_request__type  10 
paging_device_jsize  40 
path_name  10 
path_name_length 10 
path_name__type  10 
processorjdata__type 27 
processor__index 27 
processor_port_number 27 
record 27 
terminal 10 
vol__#__pf__packs  40 
vol__access_level  40 
vol__id 40 " 
vol__quota 40 
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